Search results

Search for "heterogeneous catalyst" in Full Text gives 11 result(s) in Beilstein Journal of Nanotechnology.

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • predominant PEMs [13]. Zhang et al. developed nanohybrid PVDF membranes by incorporating zeolite with enhanced thermal and electrochemical performance for lithium-ion batteries [14]. ENHs have also been used as a heterogeneous catalyst in indole synthesis by Savva et al. by incorporating gold nanoparticles
PDF
Album
Review
Published 31 Jan 2022

Highly ordered mesoporous silica film nanocomposites containing gold nanoparticles for the catalytic reduction of 4-nitrophenol

  • Mohamad Azani Jalani,
  • Leny Yuliati,
  • Siew Ling Lee and
  • Hendrik O. Lintang

Beilstein J. Nanotechnol. 2019, 10, 1368–1379, doi:10.3762/bjnano.10.135

Graphical Abstract
  • and centrifugation in order to retrieve the catalysts. Hence, we highlight the utilization of thin film nanocomposites [AuNPs]red/silicahex as a heterogeneous catalyst for the reduction of 4-NP to 4-aminophenol (4-AP), where a thin film was simply dipped into the reaction system containing an excess
  • change in color from purplish-pink to dark purple. By simply dipping the material into a 4-NP solution, both nanocomposite films, [AuNPs]cal/silicahex (after calcination at 250 °C) and [AuNPs]red/silicahex (after thermal hydrogen reduction at 210 °C), were able to act as a heterogeneous catalyst for the
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2019

Thermal control of the defunctionalization of supported Au25(glutathione)18 catalysts for benzyl alcohol oxidation

  • Zahraa Shahin,
  • Hyewon Ji,
  • Rodica Chiriac,
  • Nadine Essayem,
  • Franck Rataboul and
  • Aude Demessence

Beilstein J. Nanotechnol. 2019, 10, 228–237, doi:10.3762/bjnano.10.21

Graphical Abstract
  • nanoparticles (GNPs), GNPs have been of great interest in chemistry, dispersed on metal oxides and in CO oxidation reaction [1]. Today, GNPs of diameter less than 10 nm are known to be a remarkable, heterogeneous catalyst, capable of catalyzing a wide range of reactions including hydrocarbon combustion [2
  • hydroperoxide or by calcination at 300 °C and showed, in both cases, incomplete conversion of the alcohol (46%) under 5 bar of O2, at 30 °C and in the presence of a base [32]. Another heterogeneous catalyst, Au25(dodecanethiolate)18 deposited on porous carbon nanosheets, has been thermally treated at 500 °C for
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2019

Nanostructured carbon materials decorated with organophosphorus moieties: synthesis and application

  • Giacomo Biagiotti,
  • Vittoria Langè,
  • Cristina Ligi,
  • Stefano Caporali,
  • Maurizio Muniz-Miranda,
  • Anna Flis,
  • K. Michał Pietrusiewicz,
  • Giacomo Ghini,
  • Alberto Brandi and
  • Stefano Cicchi

Beilstein J. Nanotechnol. 2017, 8, 485–493, doi:10.3762/bjnano.8.52

Graphical Abstract
  • , oxidation to phosphine sulfide and selenide are actually under investigation in our laboratory. More significantly, we have explored the ability of one of these materials (the one with the highest loading in phosphine oxide moiety, compound 8) as heterogeneous catalyst in a Staudinger ligation reaction
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2017

Green synthesis, characterization and catalytic activity of natural bentonite-supported copper nanoparticles for the solvent-free synthesis of 1-substituted 1H-1,2,3,4-tetrazoles and reduction of 4-nitrophenol

  • Akbar Rostami-Vartooni,
  • Mohammad Alizadeh and
  • Mojtaba Bagherzadeh

Beilstein J. Nanotechnol. 2015, 6, 2300–2309, doi:10.3762/bjnano.6.236

Graphical Abstract
  • -substituted 1H-1,2,3,4-tetrazoles and reduction of 4-nitrophenol (4-NP) in water. It was found that the Cu NPs/bentonite is a highly active and recyclable catalyst for related reactions. Keywords: heterogeneous catalyst; modified bentonite; nanocomposite; 1-substituted 1H-1,2,3,4-tetrazoles; Introduction
  • heterogeneous catalyst for the synthesis of 1-substituted 1H-1,2,3,4-tetrazoles and reduction of 4-nitrophenol (4-NP). It was found that Cu NPs/bentonite is a highly active and recyclable catalyst for related reactions. The obtained results will be presented and described here. Experimental Instruments and
  • prepared and characterized. This catalyst was found to be an efficient and recyclable heterogeneous catalyst for the synthesis of 1-substituted 1H-1,2,3,4-tetrazoles and reduction of 4-NP under mild conditions. The Cu NPs/ bentonite composite remained stable under several reactions. UV–vis spectrum of an
PDF
Album
Full Research Paper
Published 03 Dec 2015

Biopolymer colloids for controlling and templating inorganic synthesis

  • Laura C. Preiss,
  • Katharina Landfester and
  • Rafael Muñoz-Espí

Beilstein J. Nanotechnol. 2014, 5, 2129–2138, doi:10.3762/bjnano.5.222

Graphical Abstract
  • example of a heterogeneous catalyst was reported by Taubert’s group with gold/cellulose nanocrystal hybrids produced in the presence of ionic liquids [88]. Also for catalytic applications, nanoparticles of silver, gold, and platinum were synthesized by using a cellulose aerogel [89]. Cellulose has been
PDF
Album
Review
Published 17 Nov 2014

Controlling the dispersion of supported polyoxometalate heterogeneous catalysts: impact of hybridization and the role of hydrophilicity–hydrophobicity balance and supramolecularity

  • Gijo Raj,
  • Colas Swalus,
  • Eglantine Arendt,
  • Pierre Eloy,
  • Michel Devillers and
  • Eric M. Gaigneaux

Beilstein J. Nanotechnol. 2014, 5, 1749–1759, doi:10.3762/bjnano.5.185

Graphical Abstract
  • design heterogeneous catalyst design, in which the classical wet impregnation technique often leads to the formation of large crystallites, particularly at high POM loadings, on various inorganic and/or on hydrophobic supports [28]. The demonstrated hybridization strategy of POMs with DODA and the
PDF
Album
Supp Info
Full Research Paper
Published 10 Oct 2014

Nanoglasses: a new kind of noncrystalline materials

  • Herbert Gleiter

Beilstein J. Nanotechnol. 2013, 4, 517–533, doi:10.3762/bjnano.4.61

Graphical Abstract
  • of silanes with water are attractive from an environmental point of view. This oxidation process with water (Equation 1) should be catalyzed by a heterogeneous catalyst so that the coproduct of this oxidation process would be nonpolluting hydrogen gas [71][72][73][74][75]. The Au52Ag5Pd2Cu25Si10Al6
PDF
Album
Review
Published 13 Sep 2013

Functionalised zinc oxide nanowire gas sensors: Enhanced NO2 gas sensor response by chemical modification of nanowire surfaces

  • Eric R. Waclawik,
  • Jin Chang,
  • Andrea Ponzoni,
  • Isabella Concina,
  • Dario Zappa,
  • Elisabetta Comini,
  • Nunzio Motta,
  • Guido Faglia and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2012, 3, 368–377, doi:10.3762/bjnano.3.43

Graphical Abstract
  • often avoided due to the possibility of poisoning effects which may occur, akin to poisoning of heterogeneous catalyst surfaces, functionalisation can sometimes have a positive effect [6]. Self-assembled monolayers (SAMs) have been shown to effectively modify the surface physics and chemical properties
PDF
Album
Full Research Paper
Published 02 May 2012

Synthesis and catalytic applications of combined zeolitic/mesoporous materials

  • Jarian Vernimmen,
  • Vera Meynen and
  • Pegie Cool

Beilstein J. Nanotechnol. 2011, 2, 785–801, doi:10.3762/bjnano.2.87

Graphical Abstract
  • ]. 2.2 Redox catalysis Titanium-silicalite-1 – A versatile redox catalyst: Titanium-silicalite-1 is a textbook example of a successful heterogeneous catalyst. This zeolite is considered as one of the most versatile redox catalysts available [157][172]. TS-1 currently finds application in various
PDF
Album
Review
Published 30 Nov 2011

Formation of SiC nanoparticles in an atmospheric microwave plasma

  • Martin Vennekamp,
  • Ingolf Bauer,
  • Matthias Groh,
  • Evgeni Sperling,
  • Susanne Ueberlein,
  • Maksym Myndyk,
  • Gerrit Mäder and
  • Stefan Kaskel

Beilstein J. Nanotechnol. 2011, 2, 665–673, doi:10.3762/bjnano.2.71

Graphical Abstract
  • heterogeneous catalyst, and in the production of semiconductors. There, SiC layers are deposited as low-k copper diffusion barriers by the application of organic precursors in plasma processes [1][2], and preventing the formation of SiC nanoparticles as a defect source is a challenge in this established
PDF
Album
Video
Full Research Paper
Published 07 Oct 2011
Other Beilstein-Institut Open Science Activities